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In a companion paper, a systematic treatment of  linearized perturbations and a 
new geometric definition of  gauge-invariant variables, based on the theory of  
vector bundles and applicable to the case of an arbitrary system of  covariant field 
equations, were carefully presented. One of  the purposes of  the present paper is 
to specify a necessary and sufficient condition that a given, finite set of  gauge- 
invariant variables, denoted collectively by to and referred to as the complete set 
of  basic variables, can be used to extract the equivalence classes of perturbations 
from to in a unique way. The above set is complete because it has the following 
property: a knowledge of  to is all one needs in the sense that if x represents an 
arbitrary point of the "space-time" manifold X and G denotes any gauge-invariant 
tensor field on X, then the value of G at x E X is uniquely specified by giving 
the germs of  basic gauge-invariant variables at x e X. Arguments are proposed 
that to also has a stronger property which is more immediately useful: any G is 
obtainable directly from the basic variables through purely algebraic and 
differential operations. These results are of  practical interest, and one concrete 
setting where one is led to the explicit definition of to occurs when considering 
the infinitesimal perturbation of the metric tensor itself (pure gravity) defined on 
a fixed background de Sitter space-time and obeying the linearized empty-space 
Einstein equations with nonnegative cosmological constant A; the case A = 0 
corresponds to linear perturbation theory in Minkowski space-time. 
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1. INTRODUCTION 

Based on a geometrical foundation, in Banach and Piekarski (1997), we 
formulated linear perturbation theory for an arbitrary system of diffeomorph- 
ism-invariant, covariant field equations. In particular, we discussed the gauge 
problem, which has been known for a long time and whose consideration 
has led to so much of the current work in cosmology (Bardeen, 1980; Ellis 
and Bruni, 1989; Mukhanov et al., 1992), and examined, from essentially 
new points of view, the notion of a gauge-invariant variable of order r. Among 
many other things, it was possible to present the construction of various gauge- 
invariant variables without ever specifying the detailed form of covariant field 
equations and without ever analyzing the symmetry properties, if any, of the 
background "space-time" geometry chosen. Consequently, this construction 
can be used as an organizing principle for the development of any specific 
perturbation theory. 

In this paper we continue the systematic investigation into the geometri- 
cal structure and gauge-invariant foundations of linear perturbation theory 
for an arbitrary system of covariant field equations. Therefore, it should not 
be surprising that, to avoid the risk of appearing to be repetitive and even 
trite, without further comment we shall use here those symbols and notions 
which either appear for the first time in Banach and Piekarski (1997) or are 
reasonably standard, and the analysis proceeds in a way similar to that already 
made familiar. Recalling the viewpoint presented in Banach and Piekarski 
(1997, Sections 3.1 and 4.1), one can define the gauge-invariant perturbation 
[s'] ~ F/FL associated with s' ~ F as the equivalence class of tangents ~' 

F, not necessarily satisfying the linearized field equations, which are 
equivalent to s' E F. This definition does not tell us directly how to use [s'] 
in practical calculations, or whether such calculations are possible at all. 
Therefore, it is natural to ask: Given the notion of a gauge-invariant variable 
of order r (Banach and Piekarski, 1997, Sections 4.2 and 4.3), could afinite 
set of basic gauge-invariant variables, denoted collectively by to and referred 
to as the complete set, be constructed such that the equivalence classes of 
perturbations are determined from this set and vice versa? Or, more precisely, 
will it be possible to extract [s'] from to in a unique way? Another interesting 
question is alluded to in Banach and Piekarski (1997, Section 6). Could one 
show, in some suitable way, that any gauge-invariant quantity is obtainable 
directly from the aforementioned basic variables through purely local (i.e., 
algebraic and differential) operations? 

These and similar questions will be the subject of this paper. In particular, 
we shall specify a necessary and sufficient condition that a given, finite set 
of gauge-invariant variables, denoted as before by to, forms a (minimal) 
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complete set. For brevity, it will be convenient to name the elements of this 
set the basic gauge-invariant variables. When fully exploiting the theory 
based on to as a fundamental concept for the description of infinitesimal 
perturbations in covariant field theories, one is necessarily led to the following 
crucial statement about to: a knowledge of to is all one needs in the sense 
that if x represents an arbitrary point of the manifold X of independent 
variables 3 and G denotes any gauge-invariant tensor field defined on X 
(Banach and Piekarski, 1997, Section 4.3), then the value of G at x e X is 
uniquely specified by giving the germs (Choquet-Bruhat et al., 1989) of basic 
gauge-invariant variables at x ~ X. For reasons to be explained in Section 
3.2, we conjecture that this statement implies a stronger one which is more 
immediately useful: any G is obtainable directly from the basic variables 
through purely algebraic and differential operations. In the generality main- 
tained here, the set to has two further useful properties. First, the equivalence 
classes of perturbations are determined from to and conversely, so the descrip- 
tion of [s'] in terms of to is unique. Second, a full set of linear "propagation" 
equations can be derived that involves only to. These equations are physically 
more transparent than the usual ones, because spurious "gauge mode" solu- 
tions are automatically excluded. Of course, such a formulation of linear 
perturbation theory for covariant field equations will be effective only if we 
verify that the set to indeed consists of finitely many elements. Fortunately, 
it is possible to confirm in detail the truth of this property of to in a variety 
of cases, and when considering Einstein's gravity theory (Misner et al., 1973) 
or other metric theories of gravity (Brans and Dicke, 1961; Bergmann, 1968; 
Wagoner, 1970; Hellings and Nordtvedt, 1973), explicit and comparatively 
simple examples of to can be given for homogeneous and isotropic cos- 
mological "background" models (Banach and Piekarski, 1996a-c). Nontrivial 
extensions to homogeneous but anisotropic cosmological background models 
(Ryan and Shepley, 1975) are also possible and will be carefully presented 
elsewhere. 

The simple and still interesting example of to, which is the one analyzed 
here, is that arising from consideration of the infinitesimal perturbation of 
the metric tensor itself (pure gravity) defined on a fixed background de Sitter 
space-time (Hawking and Ellis, 1973, p. 124) and obeying the linearized 
empty-space Einstein equations with nonnegative cosmological constant A; 
the case A = 0 corresponds to linear perturbation theory in Minkowski space- 
time. The detailed discussion of this example satisfies one of our basic 
purposes: to present an explanation of how some concrete (and thus specific) 

3Often the manifold X can be identified with the space-time manifold, even though this 
interpretation of X is not forced on us. 
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gauge-invariant variables relate to the general and universal structures of 
linear perturbation theory for covariant field equations. 

Here we proceed as follows. To prepare for the discussion and to further 
analyze the properties of "infinitesimal diffeomorphism-invariant objects," 
Section 2 introduces a number of elementary processes for creating new 
gauge-invariant variables from old, the others being only combinations of 
them. Section 3 considers, from many points of view, the notion of a complete 
set of basic gauge-invariant variables. Section 4 shows how the equations 
governing linearized perturbations look when reexpressed in a manifestly 
gauge-invariant form. Section 5 is devoted to the explicit construction of to 
for the aforementioned case of a fixed background de Sitter space-time. 
Section 6 is for discussion and conclusion. Finally, the auxiliary technical 
material is included as an Appendix. 

2. OPERATIONS ON GAUGE-INVARIANT VARIABLES 

As noted already, this section describes a number of elementary processes 
for creating new gauge-invariant variables from old, thereby enabling us to 
discuss the structure of linear perturbation theory for covariant field equations 
from still another viewpoint. Thus, let x ~ G(x,3~r), [s']) be a gauge-invariant 
variable of order r, and suppose that this gauge-invariant variable is a suffi- 
ciently smooth tensor field on X. The term "sufficiently smooth" means that 
x ~ G ( x ,  fr), Is']) is a C ~ cross section of T (k sufficiently large), with T 
denoting the tensor bundle (Banach and Piekarski, 1997, Section 4.3). Clearly, 
given G(., 3~), Is']), we can construct new gauge-invariant variables by a 
variety of operations. One such operation is accomplished by taking the 
covariant derivative o fx  .-. G ( x , f ( r )  , [ s ' ] )  relative to an arbitrary, fixed, linear 
connection on X (Banach and Piekarski, 1997, Section 2.2). As it will be 
demonstrated below, the object so obtained, denoted for brevity by x 
(VG(',3~r~, [s']))x, may be considered as the gauge-invariant variable of order 
r + l .  

To present the essential points in the simplest possible way, the workings 
of the proof will be illustrated by assuming that G(-, f~r), [s']) is a scalar 
gauge-invariant variable (T : ~) ,  and the treatment of the general case 
(T =~ ~t), while certainly possible, is formally too elaborate for the present 
work. First of all, from the definition of F~). r in Banach and Piekarski (1997, 
Section 4.2) it follows that f~) E F~). r can be decomposed as 

fr) = (2.1) 
p=0 

where each fa,;  is a cross section of the tensor bundle Spa*. Here it should 
perhaps be noticed that the tensor bundle S A* was originally introduced to 



Linear Perturbation Theory for Covariant Field Equations. II 1821 

define S* and S~r) by equations (2.15b) and (2.16b) appearing in Banach and 
Piekarski (1997), and that the possibility to describef~r~ in terms offa,p is a 
direct consequence of these equations. In exactly the same way it will be 
immediate to find the explicit form of Drs '. As a matter of fact, this form 
emerges when we put the decomposition 

s ' =  0 (sA) ' (2.2) 
A=I  

of s' E F into the decomposition 

Drs ' =  + VPs ' (2.3) 
p=0 

of Drs ', so obtaining 

Obviously, in the above formula for Drs ' each ~Tp(sa) ' is a cross section of 
S A, the tensor bundle dual to S A*. Now, using equations (2.1) and (2.4), we 
conclude from the definition of a scalar gauge-invariant variable of order r 
[Banach and Piekarski, 1997, equation (4.5)] that G(., f~r), [s']) is explicitly 
given by 

- -  IA.  | (2.5) 
p=0  A=I  

in a (hopefully) obvious notation. 
For the purposes of this discussion, it will be convenient to regard the 

covariant derivative ~7 with respect to an arbitrary, fixed, linear connection 
on X as a "symbolic covariant vector field" V = E~= I e~Va, where 4 {e a } is 
a frame of the tensor bundle T of type (0, 1) over X (Dieudonn6, 1972, p. 
119). Consequently, the action of derivative operator V on an arbitrary tensor 
field B can be characterized by 

N 

VB = ~ e ~ | VaB (2.6) 

Next, let {e~} be a frame of T* dual the frame {e a } of T. By use of the "unit 
tensor field" 

N 

J := ~ e ~ | e~ (2.7) 
a = l  

4We recall that N is the dimension of X. 
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on X, we then obtain from equation (2.5) the following expression for the 
covariant derivative of G(-, fir), [s']): 

r +  I 

VG(' , f r ) ,  Is']) = ~ ~ fa.e (3 VP(sA) ' (2.8) 
p = 0  A = I 

where 

fa,p := (1 - B0,~,)(J |  + (1 - ~r+l,p)~fA,p (2.9) 

As usual, in the above definition offA,p we have assumed that 8o,p and 8r+ I,p 
are the Kronecker deltas. Of course, given the contraction Offa,e with VP(sa) ', 
generally some convention as to which of the 1 + 2(ra + RA 4- p) indices 
in a coordinate representation Offa,p @ 7P(sA) ' are to be contracted must be 
followed when doing the contraction, but for equation (2.8) this convention 
is rather obvious and can be deduced from the requirement that x ~ fa,p(X) 
6) (TP(sa)')x is a cross section of T = tOx~x Tx, the tensor bundle of type 
(0, 1) over X. Thus, we will not dwell on the method of computing fa,p 6) 
~7e(sA)' here, referring the reader to the Appendix for more details. 

Now, let us translate the result (2.8) into the other notation, using the 
definition 

Jg(r+ 1) ] =  p~=O= ' fa,p (2.10) 

Just as in the case of equation (4.22) appearing in Banach and Piekarski 
(1997), this definition may be interpreted geometrically by saying that x 
f~r+l)(x) is a cross section of the vector bundle 

Sr "= tO Sr (2.11) 
x~X 

where 

S ~*+ 1),x : = L(S~r+ l).x, Tx) (2.12) 

But by equation (2.10) and the obvious formula 

Dr+Is ' =  ~) 4 VP(sa) ' (2.13) 
p = 0  A = I  

an abbreviated expression for the covariant derivative of a scalar gauge- 
invariant variable of order r is 

VG(' , f r ) ,  [s']) = @,+t), Dr+Zs') (2.14) 

and from the properties of f r )  e F~r).F we derive the useful identity 

@ ( r + l ) ,  Dr+l(~'q~vSb)) = 0 (2.15) 
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which holds for each C r+2 vector field v on X. Consequently, we may think 
Of~r§ 1) as being the element of F(*+ 1), e (Banach and Piekarski, 1997, Section 
4.3). This observation completes our proo f  that VG(-, J~r), [S']) is a gauge- 
invariant variable o f  order r + 1. 

Naturally, once the covariant vector field VG(',f(r), [S']) on X has been 
put into the canonical form (2.14), the remaining task is to explain the result 
of a multiple application of V to x ,-, G(x,j~r), [s']). However, this result can 
be explained straightforwardly: the object VPG(.,f(r), [s']) is a gauge-invariant 
variable of order r + p. The above observations are quite universal, except 
for the assumption made explicitly at the beginning of this discussion that 
G(., 3~r), Is']) is a scalar field on X. Fortunately, even if G(., fr), [s']) is not 
such a scalar field on X [i.e., G(., f(r), [S']) is a general gauge-invariant 
variable], the modified analysis proceeds in a way entirely similar to that 
already made familiar and the final conclusions remain basically intact, show- 
ing that ~PG(', f(r), [S']) is a gauge-invariant variable of order r + p. 

As mentioned in Banach and Piekarski (1997, Section 4.3), any cross 
section of T~r), not necessarily continuous, can in a sense be identified with 
the gauge-invariant variable of order r, and if only the vector bundle F(r ) 
does exist, as is quite often the case, then there are infinitely many cross 
sections f(r) o f  F(r) and thus there are also infinitely many gauge-invariant 
variables of order r. With regard to the choice of an integer r --- 0 and a 
tensor bundle T in the definition of F(o, this choice depends mostly on us, 
and different possible choices of r and T give rise to different gauge-invariant 
variables. Specifically, if we choose a fixed tensor bundle T, we are still free 
to introduce gauge-invariant variables of various orders. 

Thus, taking the covariant derivative of x ~ G(x, ftr), IS']) is not the 
only process for constructing a new gauge-invariant variable from an old 
one. For a fixed tensor bundle T, we also have the interesting possibility that 
the gauge-invariant variables 

Gp := G(.,fp(~p), [s']), p = 1, 2 . . . . .  k (2.16) 

of generally various orders, which are cross sections o f  T, can be multiplied 
by arbitrary, real-valued functions kp (p = 1, 2 . . . . .  k) on X and then added: 

k 
G(x,f(r), IS ' ] ) := ~ •p(x)G(x, fp(rp), [S']) (2.17) 

p=l 

In these definitions, {rl, r2 . . . . .  rk} is a sequence of integers >--0, r := 
max(rb r2 . . . . .  rk), and it may happen that some or all of these integers are 
identical. For essentially obvious reasons, the object fp(rp)depends explicitly 
on p; this object plays the role previously played by f(~) ~ F~r),F [see, e.g., 
equation (4.22) in Banach and Piekarski (1997)]. Hence, with the quantity 
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(2.17) formally defined as above, we easily find that there exists a cross 
section x ~ j~)(x) of 

S(* o = U L(S(,),x, Tx) (2.18) 
xEX 

such that j~) e F~r),r and G(x,f(r), [S']) can be expressed in the form 

G(x, f(r), [ S t ] )  : (f((r)(X) , (Drs')x) (2.19) 

Therefore, the quantity (2.17) is a gauge-invariant variable of  order r. 
This statement brings to an end our description of the basic processes 

for creating new gauge-invariant variables from old, the others being only 
combinations of them. 

3. BASIC G A U G E - I N V A R I A N T  V A R I A B L E S  

3.1. The Role of  a "Coordinate  System" on F/UL 

In Banach and Piekarski (1997), we constructed the gauge-invariant 
variables in such a way that for each choice o f f o  e F~r).r, the object G(',f~r), ") 
defines a mapping from the quotient space F/FL into a set of cross sections 
of T. Denoting this set by F(T), we thus have 

F/FL ~ [s'] ~ G(',fr~, [s']) �9 F(T) (3.1) 

where G(., f~r), [S']) is an abbreviated notation for 

X ~ x ,-. G(x,f~r), [s']) �9 Tx (3.2) 

If one should insist on the theory in which the quotient space F/FL admits 
a "coordinate system" consisting of finitely many gauge-invariant variables 

G(',fp(rp), [s']) �9 F(Tp), p = 1, 2 . . . . .  1 (3.3) 

it would of course be possible to find a necessary and sufficient condition 
that the equivalence classes of perturbations are uniquely determined from 
these basic variables. Can this be done within the formal structure of linear 
perturbation theory for an arbitrary system of covariant field equations? 

In order to answer this question, we proceed as follows. Let { rb r2 . . . . .  
rt} be a sequence of integers ->0 and define ? by ? := max(rl, r2 . . . . .  rt). 
We limit ourselves to the study of the case ? -< q, where q is an integer 
which has exactly the same meaning as in equations (2.21) of Banach and 
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Piekarski  (1997). 5 Assume further that to every gauge-invariant  perturbation 
[s'] ~ F/FL there is an associated set 

q~([s']) :=  {Gt( ' ,  [s ']),  G2(', Is ' ] )  . . . . .  Gt( ' ,  [s '])} (3.4) 

of  gauge-invariant  variables, characterized by the formulas  

Go(x, [ s ' ] ) : =  G(x, fp(rp), [s '])  

"= (fp(rp)(X), (Drps')x), p = 1, 2 . . . . .  l (3.5) 

Geometrical ly,  after denoting by Tp the tensor bundle over  X (the details of  
the definition of  Tp may depend on the particular integer p chosen),  we can 
think offp(re) as being the cross section of  

Sp(rp) :=  t.J L(S(rp),x, Tp,x) (3.6) 
x~:X 

where Tp~ is the fiber o f  Tp through the point x e X. As in Section 2, an 
identification of  Go(., Is ' I )  with the gauge-invariant  variable of  order r o leads 
us to the conclusion that, for each Crp +1 vector  field v on X, foCrp) must  satisfy 
the condition of  the form 

(fp(~p), D~P(Ss = O, p = 1, 2 . . . . .  l (3.7) 

Givenfo(rp) and hence Go(., [s ']),  another postulated property of  {Gp(., [s ']);  
p = 1, 2 . . . . .  l} is s imply this: if Go(., [s ' ])  is any one of  the gauge-invariant  
variables appearing in the definition of  q0([s']) [see equations (3.4) and (3.5)], 
then Go(., Is ' I )  cannot  be obtained f rom Go,(., [s ']),  p '  4: p,  through purely 
local (i.e., algebraic and differential) operations.  Consequently,  we are justi- 
fied in saying that the set q~([s']) is l inearly independent .  

After these preparations,  we denote by 1) the set consisting of  q~([s']) 
for  all [s ']  ~ F/FL and by to, to', and similar  symbols  the elements  of  12. A 
function tp f rom F/FL onto l l ,  defined by equation (3.4), is a linear map  which 
assigns to each [s '] ~ F/FL an element  q~([s']) ~ I I ;  thus f l  carries a canonical  
structure of  a vector  space induced by that o f  F/FL. More  precisely, ~ is a 
function space in which the usual operations of  addition and scalar multiplica- 
tion are introduced. A necessary and sufficient condition that q~ be a one-to-  
one linear mapping  of  F/FL onto f l  is that tp([s']) equals a zero-vector  of  1) 
if and only if [s '] equals a zero-vector  of  the quotient space F/FL, i.e., if and 
only if [s ']  can be identified with [~,,sb], where  v is an arbitrary vector  field 6 

5As noted already (Banach and Piekarski, 1997, Section 2.2), since the objects H I, I = 1, 2, 
. . . .  m, depend only on s and its first q covariant derivatives VPs, and since they satisfy the 
condition cr * HI( ., Dqs) = HI[ ., Dq(tr * s)] for each L it seems reasonable to refer to these 
equations as the covariant field equations of order q. 

6precisely speaking, v must be of class C k (k sufficiently large); otherwise ~,,s b cannot be a 
classical solution of the linearized field equations. 
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on the "space-time" manifold X. It will be convenient to call this condition 
a natural condition for the existence of a "coordinate system" on F/FL. Hence, 
motivated by these considerations, we obtain the following simple theorem. 

Theorem 1. If the mapping ~: F/FL ~ f l  described above satisfies a 
natural condition for the existence of a "coordinate system" on F/FL, then 
for each to ~ f~ there is just one [s'] e F/FL such that to = ~([s']). In this 
case, the mapping tp: F/FL ~ f l  is said to be one-to-one and onto, and we 
can define the inverse of ~, tp-l: ~ ~ F/FL by setting (~0-~)([s']) = Is'I). 

Proof Since the mapping q~: F/FL ~ ~ is linear, this theorem can be 
proved immediately. �9 

The mapping ~: F/Fc--~ ~ obeying the condition of Theorem 1 is 
fundamental for at least two reasons. First, [s'] = ~-l(to) is a gauge-invariant 
perturbation associated with to ~ lq (Banach and Piekarski, 1997, Section 
4.1) and the objects appearing on the right-hand side of equation (3.4), called 
the basic gauge-invariant variables, are "coordinates" of [s'] E F/FL. Thus 
[s'] is uniquely determined from to = q~([s']) and vice versa. This fact supports 
an interpretation of ~: F/FL ~ f~ as a "coordinate system" on F/FL. Second, 
any gauge-invariant variable G(., f ,) ,  Is'I) can be constructed directly from 
the basic variables GI(', Is']), G2(', [s']) . . . . .  Gt(' ,  [s']) through purely local 
operations. We discuss some aspects of this problem in Section 3.2. 

Of course, at this level of generality little more than the definition, or 
the concept itself, is possible. In fact, as the theory presently stands, it is by 
no means clear what universal arguments we are to use in explicitly con- 
structing the basic gauge-invariant variables and the one-to-one mapping of 
F/FL onto ~ .  Nevertheless, our primary task here was to show that the 
concept of basic gauge-invariant variables and the notion of a "coordinate 
system" on F/FL can be discussed without ever presenting the detailed form 
of covariant field equations and without ever analyzing the specific properties 
of the background "space-time" geometry chosen. If one means by covariant 
field theories Einstein's gravity theory or other metric theories of gravity, 
one will be able to provide explicit and comparatively simple examples of 
the mapping q~: F/FL ~ ~ .  In a cosmological setting, these examples are 
primarily applicable to the case of an almost-Robertson-Walker universe 
model (Ellis and Bruni, 1989). Then, as explained already by Banach and 
Piekarski (1996a-c), the set q~([s']) consists of 17 or 18 "geometrically" 
independent, not identically vanishing gauge-invariant variables. We can also 
obtain an analytical form of q~([s']) for the infinitesimal perturbation of the 
metric tensor itself (pure gravity) defined on a fixed background de Sitter 
space-time (see Section 5). 
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3.2. Completeness of the Set q~([s']) of Basic Gauge-Invariant 
Variables 

Using the concepts of Section 3.1, we can now formulate our main 
theorem. 

Theorem 2. Suppose that q0 is a one-to-one mapping of F/FL onto ~1 
defined as before; thus this mapping has exactly the same meaning as in 
Theorem 1. Let to := q~([s']) be a set of basic gauge-invariant variables Gp(', 
[s']), p = 1, 2 . . . .  , l, associated with [s'] e F/FL [see equation (3.4)]. Under 
these circumstances, a knowledge of to is all one needs in the sense that if 
x represents an arbitrary point of X and G(',f~), [s']) is any gauge-invariant 
variable of order r, then the value of G(',  )~r), [s']) at x e X is uniquely 
specified by giving the germs (Choquet-Bruhat et al., 1989) of basic gauge- 
invariant variables Gp(', Is'I), p = 1, 2 . . . . .  I, at x ~ X. 

Remark 1. Alternatively put, this theorem means that the set to := tp([s']), 
which is finite and linearly independent (in the sense of Section 3.1), forms 
a complete set of basic gauge-invariant variables. 

Remark 2. A necessary and sufficient condition for the set to := q0([s']) 
to be a complete set for each choice of [s'] e F/FL is automatically assured 
by our definition of the mapping q0: F/FL ---) ~ and is exactly the same as 
the natural condition for the existence of a "coordinate system" on F/FL (see 
Section 3.1). 

Proof. According to the investigations in Banach and Piekarski (1997, 
Section 4.3), the gauge-invariant variable G(',  J~r), [S '])  coincides with the 
mapping 

X ~ x ~ (f~r)(x), (Dr-g')~} ~ Tx (3.8) 

where ~' is an arbitrary member of [s'] e F/FL and where x ~ f~r)(x) is a 
cross section, not necessarily continuous, of the vector subbundle F(~) of 
S~). Clearly, since G(x, f~r), [s']) is characterized by 

G(x,f(r), [s ' ] )  :---- (f(r)(X), (Drs')x) (3.9) 

the form of a quantity appearing on the right-hand side of equation (3.9) is 
completely independent of the choice of ~' E [s'] and this conclusion holds 
for each x e X. Thus, combining equations (3.8) and (3.9), we see that [s'] 

G(x, f~r), [s']) defines a mapping of F/FL into Tx. Together with the 
identification rule [s'] = q~-l(to) of Theorem 1, if we let to denote the set of 
basic gauge-invariant variables Gp(., [s']), p = 1, 2 . . . . .  l, associated with 
[s'] ~ F/FL, the typical (i.e., analytical) expression of the aforementioned 
fact is 

G(x,f(r), [s ' ] )  --- G(x,f(r), to) (3.10) 
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where 

G(x,f(r), ") " =  G(x,f(r) q ) - l ( . ) )  (3.1 l) 

Here G(x,f~r), "): f l  ~ Tx represents a linear functional, that is, a linear function 
whose arguments are basic gauge-invariant variables to' e f~ associated 
with various elements of F/FL. But from equation (3.9) it follows that our 
constructions are local, because the original gauge-dependent variable 7' is 
allowed to enter the definition of (f~r)(X), (Dr")x) only through ~'(x) and its 
covariant derivatives (VP~')x up to order r. As a consequence, all the observa- 
tions and all the results of this paper, especially Theorem 1, remain valid, 
mutatis mutandis, when we replace X by any open set O C X in the statements 
and proofs. Therefore, after denoting, respectively, by s' ~o and Gpl 0 the restric- 
tions of s' and Gp(', [s']) to O and by toga the set of basic gauge-invariant 
variables Gp~o, p = 1, 2 . . . . .  l, associated with the equivalence class [s~'o] 
of sl'o, we immediately find that if x belongs to O, the object G(x, f~r), [s']) 

t . depends in essence on [s~o], in other words, we have 
- -  r 

G(x,f~), [s']) = Go(x, fr~, [s~o]), x e O (3.12) 

However, [s(~] is uniquely determined from toga (just as [s'] is uniquely 
determined from to), and thus for each choice o f x  e O andfr )  e F~'r),F we 
can regard G(x, f~r), [S']) as a function of tolo: 

G(x,f~), [s']) = d~(X, fr), to~), X e 0 (3.13) 

Obviously, equation (3.13) is valid for all open subsets 0 of X containing x 
e X, however small. Then a standard argument of differential geometry yields 
the conclusion that the value of G(',j~,), [s']) at x �9 X is uniquely specified 
by giving the germs of basic gauge-invariant variables Gp(., [s']), p = 1, 2, 
. . . .  l, at x �9 X. These germs will be denoted collectively by tox. With such 
a convention in mind, we finally observe that there exists a function G(x, 
hr), tox) related to G(x, hr), [St]) by the equation 

G(x,f~r), tox) = G(x,f~r), [s']), x �9 X (3.14) 

and a derivation of this local equation completes the proof of Theorem 2. �9 

If now, instead of directly using equation (3.14), we relate the infinitesi- 
mal perturbation s' of sb to the tensor fields (sA) ' as in the formula (2.2), we 
get from the definition (3.9) and the analysis of Section 2 an explicit expression 
for G(x,f~r), [s']) which tells us that G(x, fr), Is']) is a linear combination of 
(sA)'(X) and the first r covariant derivatives of (sA) ' evaluated at x �9 X [see, 
e.g., equation (2.5)]. Then in such a combination we can try to substitute the 
similar formulas for Gp(x, [s']) that result from exploiting the definitions 
(3.5) of basic gauge-invariant variables, so eventually obtaining a less abstract 
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realization of equation (3.14). The following hypothesis should help elucidate 
the precise meaning of this conjecture. 

Hypothesis. For sufficiently smooth gauge-invariant variables G(., J~r), 
[s']) and Gp(., Is']), p = 1, 2 . . . . .  l, Theorem 2 implies a stronger one which 
is more immediately useful: any G(., J~r), [s']) is obtainable linearly from the 
basic gauge-invariant variables Gp(', Is']), p = 1, 2 . . . . .  l, through purely 
algebraic and differential operations. 

Remark. Usually, the term "smooth" means C =, but here is used in 
preference to C =, because in fact we do not require "infinite" smoothness. 

In a series of recent papers (Banach and Piekarski, 1996a-c), it was 
explicitly demonstrated that one concrete setting where one is led to the 
full confirmation of the above hypothesis occurs when considering linear 
perturbation theory for Einstein's field equations or the Einstein-Liouville 
coupled system of equations. Our concern there was with the complete, finite 
set of basic gauge-invariant variables as applied to cosmology (Ryan and 
Shepley, 1975). To model the real universe in a mathematically tractable 
structure, emphasis was placed on discussing the simplest case in which the 
background space-time geometry is that of a k = 0 or k + 1 Robertson-Walker 
space-time (Kramer et al., 1980). However, the extension of our previous 
results to other space-time geometries [e.g., the Bianchi type I background 
(Hawking and Ellis, 1973)] is very straightforward. Of course, finding a 
method to solve the problems offered by these cosmological models is no 
proof by itself of the universality of the method. To defend the present 
approach on still better grounds, we should attempt to show in addition that 
a confirmation of the hypothesis in important but particular cases is just an 
illustration of how the general theory works when no information about the 
symmetry properties of the background is given. Unfortunately, this problem 
is extremely difficult and thus its more satisfactory solution is clearly beyond 
the scope of the formalism developed here and in Banach and Piekarski 
(1996a-c). 

4. L I N E A R  P E R T U R B A T I O N  E Q U A T I O N S  F O R  THE BASIC 
GAUGE-INVARIANT VARIABLES 

As can be seen from the discussion in Section 3.2 of Banach and Piekarski 
(1997), the system of linear differential equations for the determination of 
s' is given by 

(n[q), Dqs ') = 0, I = 1, 2 . . . . .  m (4.1) 
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Recall, when using this system, that the mapping 

X ~ X ~ (H~q)(X), (Oqst).r) E Vlx (4.2) 

which is a cross section of 

V t := t_l V~ t (4.3) 
xEX 

may be interpreted as a gauge-invariant variable of order q. Thus, if s' and 
v are, respectively, an arbitrary cq cross section of S and an arbitrary C q+t 
vector field on X, then the following condition is automatically obeyed 
everywhere: 

(H~q), Dqs ') = (H~q), O q ( s  ' + ,~sSb)) ( 4 . 4 )  

However, given the results of Section 3, Theorem 2 enables us to show that, 
for all possible choices of the pair (L x), there exists a linear "function" 
Gt(x, "): l)x ---) V~ defined on the space f~x of germs tox e l)x of basic gauge- 
invariant variables to at x e X such that 

(n(q)(x), (Dqs')x) = -at(x, tox) ( 4 . 5 )  

If, in line with the more concrete interpretation of Theorem 2 being developed 
(see the formulation of our hypothesis), any gauge-invariant variable is obtain- 
able locally from the basic gauge-invariant variables 

Gp : -  Gp(., [s']), p = 1, 2 . . . . .  1 (4.6) 

through purely algebraic and differential operations, equation (4.5) must be 
understood as 

q l 
(H~q)(X), (Dqs')x) = ~ Z h~'e(x) Q (VkGp)x ( 4 . 7 )  

k=0 p=t  

where the objects htk'P(x) are tensorial coefficients which depend on x through 
a background solution Sb(X) to the nonlinear field equations. Moreover, 
explaining the meaning of the symbol G, this symbol indicates that hLP(x) 
Q) (VkGp)x ~ Vlx is a value of hlk'P(x) o n  (VkGp)x, i.e., a contraction of 
h~,P(x) with (VkGp)x. 

The formula (4.7) carries with it an interesting implication. As noted in 
Banach and Piekarski (1997, Section 4.1), we may think of FC/FL as being 
the subspace of ['/I'c. 7 Consequently, if 

to := {Gl, G2 . . . . .  Gt} (4.8) 

belongs to ~ c  := tp(Fc/FL), the image space of Fc/FL under tp, we find that 

7 By definition, the elements of F c are classical solutions s'  of equations (4.1). 
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the set co ~ f l  c of basic gauge-invariant variables is constrained to satisfy 
the following system of covariant differential equations: 

q 1 

~ htk ,p (5) VkGp = O, I = 1, 2 . . . . .  m (4.9a) 
k = 0  p = l  

Because of the existence of this system, it should now be clear what equations 
(4.1) really are: these are basic gauge-invariant equations which may be 
reexpressed in a manifestly gauge-invariant form (4.9a). 

Starting with the linearized field equations for Einstein's gravity theory 
applied to an almost-Robertson-Walker universe model (Ellis and Bruni, 
1989), it will be possible to provide nontrivial examples of equations (4.1) 
and (4.9a). To put this statement more succinctly in terms of concrete formulas, 
we mention that equations (3.12a)-(3.12e) and (4.18a)-(4.18e) considered 
in one of our previous papers (Banach and Piekarski, 1996b, pp. 282 and 
293) may be taken as such examples. Another example is given below in 
Section 5. 

At this stage of the analysis, we say that the system (4.9a) gives usually 
an underdetermined system of differential equations for the specification of 
basic gauge-invariant variables to. A determinate system results only if we 
derive some additional "constraint" equations for to. In our somewhat sym- 
bolic notation, these additional equations can be written as 

/ 

~ h~ ,p (3 VkGp = 0 (4.9b) 
O<--k<--rl p =  1 

where 

I = m +  l , m + 2  . . . . .  l' (4.9c) 

with i"i and 1' denoting the appropriate integers. 
When examining the covariant field theories of physical interest (Banach 

and Piekarski, 1996a-c), we shall always find an explicit representation for 
the tensorial coefficients ffk 'p (m + 1 <-- I <-- l') and equations (4.9b). As an 
illustration of this fact, see equations (4.18f) and (4.18g) in Banach and 
Piekarski (1996b, pp. 293 and 294). Also, in each particular case, it will be 
"easy" to prove that (i) equations (4.9a) and (4.9b) form a closed set of 
partial differential equations for the determination of oJ and that (ii) every 
classical solution to to these equations is an element of 11 c, the image space 
of FclFL under ~. This is crucial: this establishes one possible sense in which 
the present formalism determines potentially everything, namely that one can 
extract [s'] ~ Fc/FL from to := tp([s']) E f~c in a unique way. 
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5. APPLICATION:  EINSTEIN 'S  GRAVITY T H E O R Y  AND A 
FIXED B A C K G R O U N D  DE S I T T E R  SPACE-TIME 

5.1. Preliminaries 

In this section, we shall study the perturbation method on the basis of 
Einstein's general theory of relativity. For an empty space (Tab = 0), the 
metric gab defined on X (dim X = 4) is assumed to obey the covariant field 
equations given by 

Rab --�89 + Agab = 0 (5.1) 

in the standard notation (c = 8"rrG = 1); the space-time metric gab has 
signature ( - ,  +,  +,  +). We introduce afixed background metric %b, which 
is the space-time metric of constant curvature K (K = -~A). The resulting 
background space for A > 0 is de Sitter space-time (Hawking and Ellis, 
1973, p. 124). It will be convenient to take the contravariant forms g~b and 
yah of the metrics ga6 and %6 to be more fundamental and the covariant 
forms gab and %b as derived from them by the relations 

gabgbc = ~a c = yca = y a b ~ l b  c (5.2) 

where ~'ac = %a is the Kronecker delta (ya  := 8a). Here and throughout 
this section, we adopt the summation convention whereby a repeated index 
implies summation over all values of that index. 

If gab depends differentiably on e E oR (Banach and Piekarski, 1997, 
Section 3.1), it will be possible to define the infinitesimal perturbation q~b 
of ~/ab as follows: 

qab ( O gab ~ 
:= \-gg-~ L=0 (5.3) 

Let a slash denote the covariant derivative of a tensor field B ab~  with respect 
to %b [B~b"'c)d := VaBab'"c; here the symbol Va has the same meaning as in 
Wald (1984, pp. 30-36)].  A careful analysis of 

[0(  1 )] 
Rah -- 5 Ry b + Ay% = 0 (5.4) 

F-=0 

then shows that the linear differential equations for q~t, are given by 

Yce(%dGa~de__ I a cde/ ~-y byvG ) = 0 (5.5) 

where 

A G abcd := --~- qe[a( ~b][c'yd e - -  ,yb]d,yCe) 

- -  ,ydf~le[ar  f ~- ycf'yeIaqb]d!e f (5.6) 



L i n e a r  Perturbation Theory  for Covariant  Field Equations.  I I  1833 

and where the process of alternation over two upper indices a and b in the 
expression on the right-hand side of the above formula is denoted by square 
brackets (Schouten, 1954). Obviously, combination of (5.5) and (5.6) yields 
the desired system of equations which describes the "evolution" in space- 
time of qab. Another role of the system (5.5) is in providing an example of 
equations (4.9a). The validity of this statement follows mostly from the fact 
that, as will be demonstrated in Section 5.2, the tensor field G abCd is a gauge- 
invariant variable of order 2 and thus the system (5.5) is a manifestly gauge- 
invariant form of equations (5.4). 

Consider the local coordinate system (x ~) in a neighborhood N~ of x e 
X with four functions ~ :  Yx ~ R (a = 1, 2 . . . . .  4) whose values at x' 
Nx are the coordinates of the point x' of the space-time manifold X. The 
directional derivatives along the coordinate lines at x' ~ N~ form a basis of 
an N-dimensional vector space (N = 4): 

e~(x') := (OlOx~)~x, (5.7) 

This space, called the tangent space Tx,(X), consists of the tangent vectors 
at x' .  The basis {ea(x')} is called a coordinate  basis or h o l o n o m i c f r a m e .  For 
each x' e X in a coordinate domain, the four linearly independent l-forms 
ea(x ' ) ,  which are uniquely determined by 

e~(x ') 0 eb(X') = "Yab (5.8) 

form a basis {e~(x')} of the dual  space  T*,(X) of the tangent space T~,(X). 
This basis {e~(x')} is said to be dual to the basis {e,(x')} of T~,(X). 

Now, using the terminology and notation of Banach and Piekarski 
[(1997), equations (3.3) and (3.5)], the explicit formulas or interpretations 
for n, A,  Sb, S~, S' = V~ ', (sA) ' = V~ ', and so forth are easily deduced 
from the above considerations as follows: 

n = A  = 1 (5.9a) 

S b "~- S~b = S 1 = ~efe e ~ e f  (5.9b) 

s' = (sA) ' = (S l), = qeYee | ef  (5.9C) 

Vs '  = VIs  ' = qe~geg | ee ~ ef (5.9d) 

V2s ' = qeflgheh ~ e g | ee | ef  (5.9e) 

For brevity, let us set h := (abcd)  and then define the objects f(p• := f(aX,)p 
- -  h) - f t , p  (P = 0, 1, 2) dual to VPs ' = VP(sA) ' = VP(sl) ' (p = 0, 1, 2) by 

2A 
f~x) : _  3 "yg[a~tb]lc'ydlheg ~ eh (5.10a) 

f t  x) := 0 (5.10b) 

f~• := --2~e[a~lblh~g[C~d]fe f ~ e e ~ e g Q e h (5.10c) 
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Before we proceed to the alternative expression for G abcd, it is necessary to 
note that 

( e a @ e b) Q) ( e c | e d) = "yac'~bd ( 5 . 1 1 )  

and that a similar contraction of e, | eb | e c | e d with e e @ e f | eg | e h 
yields ~lae'~bf~Cg'~d h. By virtue of these conventions the quantity G ~b~d may be 
written in a more compact form: 

2 
Gab~d = ~ f(pX) @ VPs, (5.12) 

p=0 

Inasmuch as 

2 

ffxl := �9 f(~) (5.13) 
p=O a p  

is, for each h, a cross section of the vector subbundle F(2) of Sfi) (see Section 
5.2), this result for G abed agrees exactly with equation (2.5) and thus defines 
a scalar gauge-invariant variable of order 2: 

G"bCa = (fl~/, DZs') (5.14) 

Clearly, the aforementioned concepts are tied to the choice of a particular 
holonomic frame {ea}, and the gauge-invariant quantity which does not 
depend on this choice is given by 

G = GaOCde~ @ e b @ ec @ ed (5.15) 

We finally mention the following. In general, we have A 4 : 0  and our 
constructions above are valid when A > 0 or A = 0. A particular case is 
that in which A = 0; in that case (X, ~laO) is the simplest empty space-time 
in general relativity, namely, Minkowski space-time. 

5.2. Discussion of the Meaning of G ~ 

Let {B(~, x); e ~ ~ }  be a curve of geometrical objects obtainable tensor- 
algebraically from the metrics g,~b(e,, X), ~' ~ ~ ,  and their first-, second-, 
or higher order covariant derivatives with respect to ~ab(X), and suppose that 
B(e, x) depends differentiably on ~. With the abbreviation B o := (B),=o, we 
can define the quantity ~B which represents the "first variation" of B0: 

gB := (5.16) 
=0 

As shown already by Ehlers (1973), this first variation is invariant under the 
action of an "infinitesimal diffeomorphism" (Wald, 1984) if and only if the 
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following condition holds for each vector field v on X: 

~ B  0 = 0 (5.17) 

In order to satisfy the above equation, it is necessary to use a scalar B that 
is constant in the unperturbed space-time (X, %b), or any tensor B~b...cd that 
vanishes in (X, %b), or a tensor whose "background value" is a constant 
linear combination of products of Kronecker deltas yab (Stewart and Walker, 
1974; Stewart, 1990). 

Apparently, what seems unsatisfactory about the gauge-invariant vari- 
ables G abed introduced in Section 5.1 is that although they are gauge-invariant 
objects of order 2 by construction, 8 it is not clear a priori to which quantity 
B they correspond. However, if R~bcd is the Riemann tensor of the connection 
defined by gab and ~ab is the unperturbed space-time metric of constant 
curvature K (K = I A  -> 0), we immediately find from 

gabcd "--'~ gae gbfRefcd (5.18) 

and 

A 
(Rabcd)~= 0 = ~ (~lacybd -- "~adybc) (5.19) 

that 

Thus 

~d(Rabcd)~=oea | eb | e ~ | e d] = 0 (5.20) 

8The components  G caef of G with respect to an arbitrary coordinate basis are gauge-invariant, 
~def ~-a - ~d because we get G ' = 0 when q = (~ ,~b)  �9 Concerning the definition of sb, see equa- 

tion (5.9b). 

~Rabcd :=  [ ~lOgabcd| (5.21) 
L= ~ 

is a gauge-invariant quantity with a simple geometric and physical meaning, 
and we can express G a~ in terms of gR~bcd: 

a abcd = ( a ~ % ) f q e  (5.22) 

This way, the internal consistency of the formalism and the gauge-invariant 
character of G ~bca are demonstrated and understood from still another 
viewpoint. 

With the same notation as in Banach and Piekarski [(1997), equation 
(2.16b)] and Section 5.1, we now define S(~) by 

2 
S~) "= �9 S* (5.23) 

p=0 
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with S* denoting the dual of the tensor bundle Sp of type (2, p) over X 
(Dieudonn& 1972, p. 119). Applying the general construction of the vector 
subbundle F(r ) of S~r ) to the particular case where r equals 2 and S~) is given 
by (5.23) (Banach and Piekarski, 1997, Section 4.2), we finally deduce from 
equations (5.10)-(5.14) that since G ab'a is a scalar gauge-invariant variable 
of order 2, the ~(x) object j(2) appearing on the fight-hand side of equation (5.14) 
can be regarded as a cross section of FIz). Because of this crucial fact, the 
specific calculations we present here are indeed an example of the general 
formalism developed within the framework of linear perturbation theory for 
an arbitrary system of covariant field equations. 

5.3. Relation of {G ~ to the Complete Set of Basic Gauge- 
Invariant Variables 

With these preparations, we are now ready to prove the following 
theorem. 

Theorem 3. Let 

sb := ~l"aec @ ea (5.24) 

be a background solution of Einstein's field equations for empty space (i.e., 
the contravariant space-time metric of constant curvature -~A described in 
Section 5.1), and let Is'] denote the equivalence class of 

s' := qCae~ | ed (5.25) 

Define G~aef( ", [s']) by equation (5.6), and suppose that qD([s']) is related to 
the set {Gcaef( ", [s'])} by 

q~([s'l) := {Gcdef( ", [s'])} (5.26) 

where [s'] E F/FL. Under these circumstances, if q0([s']) is a zero-vector of 
the space ~ consisting of q~([T]) for all [7'] E F/FL, then there exists a vector 
field v on the space-time manifold X such that [s'] for which q~([s']) = 0 is 
the equivalence class of ~vsb. 

Remark 1. Interpreting this theorem, the mapping q0: F/FL ~ f~ defined by 

F/FL ~ [s'] ~ q~([s']) ~ ~ (5.27) 

satisfies a natural condition for the existence of a "coordinate system" on 
F/FL. 

Remark 2. Since q~([s']) equals a zero-vector of ~ if and only if Is'] 
equals [~vsb] for some v, we can think of ~o := q0([s']) as being the complete 
set of basic gauge-invariant variables (in the sense of Section 3.2). 
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Proof If the equivalence class [s'] of s' : =  qcde c ~ ed happens to satisfy 
the condition q~([s']) = 0, we easily find from the definition (5.26) that 

A "~ qe[a('~b]c'~d e -- ,yb]d,~Ce) 

"I- "~dS'ye[ar f -- ~cS'ye[ar f = 0 (5.28)  

However, this constraint is a necessary and sufficient condition [Truesdell 
and Toupin, 1960, equation (84.12), p. 352] that, given a symmetric tensor 
field s' := q<de< | ed on X, there exists a vector field v on X such that s' - ~fvSb. 
Hence we have [s'] = [~vSb], and the proof of Theorem 3 is complete. �9 

5.4. Knowledge About [s'] s FclI'L by Means of the Covariant Field 
Equations for Basic Gauge-Invariant Variables 

A complete set of symmetry properties for G abcd is G abcd= G tab]tcd~ and 
G a[bcd] = O, thus there are 20 linearly independent, not identically vanishing 
components in {Gabcd}. It then follows that since the system (5.5) consists 
of only l0 algebraically independent equations, these equations do not form 
a determinate system of equations for the specification of { Gabcd]. However, 
the definition (5.6) of G abcd implies 

"~ce~ldfaabefg q- "Yge~/cfGabefld q- ~#de~lgfGabeflc = 0 (5.29) 

and equations (5.5) and (5.29) represent an explicit, closed system of covariant 
field equations for the determination of { Gabcd}. In this way, the "constraint" 
equations (5.29), which are an example of the system (4.9b), may be added 
to equations (5.5) without the necessity of using the definition (5.6) [i.e., 
without the need of expressing G abcd in terms of q~b] 

Let us ask now to what extent a knowledge of the classical solutions of 
equations (5.5) and (5.29) determines the equivalence classes of perturbations. 
This problem can be studied if we prove the following theorem. 

Theorem 4. Every C 1 solution of equations (5.5) and (5.29) for {G abcd } 
belongs to f i c ,  the image space of Fc/FL under tp. 

Remark. Such a proof requires very careful examination if a sound and 
consistent development is to be achieved for the theory of perturbations at 
the level of Einstein's field equations (5.1) and the background space-time 
metric "7<,b of constant curvature ~-A. It must be stressed that as the theory 
presently stands, the validity of Theorem 4 is not evident, and we would like 
to show that the solution of equations (5.5) and (5.6) for q~b is equivalent to 
solving equations (5.5) and (5.29) for G abcd. The gist of the point made by 
Theorems 3 and 4 is that the information content contained in the gauge- 
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invariant perturbation does not contract as the level of description passes 
from [s'] = [qabe~ Q eb] ~ Fc/FL to ~([s']) = {G~bcd( ", IS'I)} E f/C, since 
the passage essentially involves a complete set of basic gauge-invariant 
variables and every classical solution of equations (5.5) and (5.29) determines 
the equivalence class of perturbations. 

Proof  Suppose that {G abed} is a classical solution of equations (5.5) 
and (5.29). By means of arguments which are formally in the same form as 
those given in Trautman (1962) and Pirani (1965), it is then possible, provided 
G abcd is of class C ~, to deduce from equations (5.29) and the symmetry 
properties of G abcd the existence of a symmetric tensor field s' := qabe a 
e b on X satisfying equations (5.6). On substitution of (5.6) for G abcd into 
equations (5.5), the object {qab} obtainable from the components of the 
aforementioned tensor field can be regarded as a classical solution of equations 
(5.5) and (5.6). Thus {G abcd} belongs to f / c ,  the image space of Fc/FL under 
q0, 9 and this observation completes the proof of Theorem 4. �9 

6. F I N A L  R E M A R K S  

In this and the companion paper (Banach and Piekarski, 1997), we have 
formulated linear perturbation theory for an arbitrary system of covariant 
field equations in such a way that the notion of a complete set of basic gauge- 
invariant variables is structurally universal, i.e., it holds regardless of the 
precise forms of Sb and H~q). No doubt, it is useful to have a universal 
formalism for the description of the equivalence classes of perturbations, as 
far as the basic structure of the theory is concerned. The condition (2.24) 
given in Banach and Piekarski (1997) is universal, and there is little reason 
to believe that such a universality should suddenly disappear as the full 
nonlinear equations HI( ., Dqs) = 0 for s are approximated by HI( ", DqSb) = 
0 and (H~q), Dqs') = 0. This aspect of the gauge problem was investigated 
in various directions in this work. Beginning from Einstein's gravity theory, 
the new concepts developed were successfully applied to the construction of 
q~: F/FL --) f / f o r  the cases of a fixed background de Sitter space-time (see 
Section 5) and an almost-Robertson-Walker universe model (Ellis and Bruni, 
1989; Banach and Piekarski, 1996a-c). In addition, we have already verified 
that nontrivial extensions to homogeneous but anisotropic cosmological mod- 
els (Ryan and Shepley, 1975) are also possible. However, since these exten- 
sions (i.e., the explicit definition of f initely many basic gauge-invariant 
variables and the explicit construction of a coordinate system on F/FD are 
not immediate, they will be treated in a separate paper. The applications 

9As noted already, combination of (5.5) and (5.6) yields the desired equations for q,,b, and s' 
:= q"be~ | e b is an element of Fc if and only if the components q~b of s' satisfy these equations. 



Linear Perturbation Theory for Covariant Field Equations. II 1839 

made, though still not numerous, indicate the usefulness of the ideas presented, 
and hold promise for their applicability to problems which competitive theo- 
ries have not been able to treat adequately. 

Among the issues that can be studied systematically with this sort of 
approach, the examination of the effect of using a semiclassical description 
in which the background geometry is taken in the classical framework and the 
gauge-invariant perturbations are considered as quantum variables presents a 
most interesting challenge. Clearly, there are many ways of performing this 
task, and a very natural way consists in applying the methods of symplectic 
geometry and geometric quantization (Woodhouse, 1991). For a Lagrangian 
formulation of covariant field theories (Lee and Wald, 1990), the important 
object is a "presymplectic form" Sb ~ 0(Sbl', ") defined on the space F of 
cross sections Sb of the vector bundle S. Such a presymplectic form can be 
used to construct a real-valued, bilinear functional of two "infinitesimal 
perturbations" s' and ~' of Sb, denoted 0 (SblS', -S'). This functional satisfies 
the property that when Sb is a solution to the nonlinear field equations and 
s' and ~' solve the linearized field equations, then O(SblS', ~') is gauge- 
invariant, i.e., we have 

O(SblS' + ~s ~' + ~ S b )  = O(SblS', ~') (6.1) 

where v and ~ are two arbitrary vector fields on X. In other words, the two- 
form 0(-I-, -) fails to be a symplectic form on F, the space of solutions to 
the nonlinear field equations, because it is degenerate; equivalently, for each 
Sb ~ F, the set Fc consisting of classical solutions to equations (4.1) is 
unsuitable to serve as phase space of linear perturbation theory because it is 
"too large." 

However, with the help of a complete set of basic gauge-invariant 
variables, we can try to prove that O(SblS', ~') depends only on to := tp([s']), 
i.e., that there exists a bilinear functional O(sblto, ~)  of to e I~C and ~ E 
1) c related to O(SblS', ~') by 

O(sblto, ~)  = O(SblS', ~') (6.2) 

If this reduction process gives rise to a symplectic structure O(Sbl', "): ~ c  
X ~ c  "-~ R via (to, ~)  ~ O(Sblto, ~), it will be possible to find a quantum 
theory in which the functions O(sblto, ") on the "classical phase space" f l c  
"= qXFc/FL) are represented (irreducibly) by operators O(Sblto, ") satisfying 
the following commutation relations (Wald, 1994, p. 37): 

[~)(Sblto, "), O(Sbl~, ")] = --iO(sblto,-~)I (6.3) 

where ] denotes the identity operator and where we choose units where h = 1. 
The above discussion has laid out the basic mathematical framework of 

the geometric formulation of quantum field theory in a semiclassical approach. 
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However, as noted already by Wald (1994), the issue of how to make physical 
predictions from the theory for the outcomes of measurements remains to be 
addressed. We hope to study these and similar problems in the future. 

APPENDIX. SOME CONVENTIONS REGARDING THE 
DEFINITION OF fA,p Q ~ P ( s A )  t 

We have already remarked that, given the result fa.p Q VP(sA) ' of the 
contraction Of fa,p with VP(sa) ', generally some convention as to which of 
the 1 + 2(ra + RA + p) indices in a coordinate representation of fa,p | 
VP(sA) ' are to be contracted must be followed when doing the contraction. For 
equation (2.8), the meaning of the symbol (3 can be explained in several steps. 

(A) If {ca} is a frame of the tensor bundle of type (1, 0) over X (1 is 
the contravariant index and 0 is the covariant index; dim X = N), then there 
exists a unique frame {e ~} of the tensor bundle of type (0, 1) over X such 
that e a G eb = ~ab (~1% is the Kronecker delta and a and b are integers ranging 
from 1 to N). The frame {e ~} is called the dual of {e~}. 

(B) Let us set 

E~ := e ~j | . . .  | e"RA+P | ebl | "'" | eb, a (A.la) 

and define E~, by 

E~ := ecl (~ "'" (~ ecRA+p (~ edl (~ "'" (~ edra (A. lb) 

With the same notation as in B anach and Piekarski (1997, Section 2.1), from 
the definitions (A.la) and (A.lb) we easily see that {E~} is a frame of the 
tensor bundle spa and {E~} is a frame of the tensor bundle Sp A* dual to SPA. 
Clearly, the value of E~, on E~, denoted E~ (3 E~ or ~ ,  is 1 if a := (cl 
' ' "  CRA+pd  I ' ' '  dra ) equals [3 := (al "'" aRa+pbl "'" br A) and is 0 otherwise. 

(C) Since the objects fa,p and VP(sa) ' appearing in equations (2.1) and 
(2.4) are, respectively, the cross sections of Sp A* and SpA, these objects can 
be decomposed as 

fa,p = ~ (fa,p)aE~ (A.Za) 
Ot 

VP(Sa) ' = ~ (VP(sA)')f3E~ (A.2b) 
B 

where (fa,p)~ are the components offA,p with respect to {E~'} and (17P(sA)') f3 
are the components of ~7p(sa)' with respect to {E~}. 

(D) Substitution of the decomposition (A.2a) forfA.p and a similar decom- 
position forf~,p_j into equation (2.9) yields the following result for fA,p: 

f a , p = Z Z  - b ( fA,p)ake a (~ eb | E~_ l (A.3) 
a,b h 
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where 

(fa,p)bah : '~- (1 - b BO,p)~ a(fA,p-l)h + (1 - Br+l,p)Va[(fA,p) b] (A.4)  

with (fA,p) b denoting the components offa,p with respect to {eb | x Ep_ 1 }. AS 
regards Va, the meaning of this symbol is conventional and is explained, e.g., 
in Wald (1984, pp. 30-36) .  

(E) If we define the contraction of e a | eb | Ep ~- ~ with e c | E p- l by 

( e a ~ e b ~  x Ep_l) (3 (e c @ E p - I )  = ~Cb~h~rea (m.5) 

we immediately obtain from (A.3) and 

~P(sA) ' = ~ ~ (~P(sA)')~e c ~ E p-I (m.6) 

that 

L,p (~ ~P(sA) ' : ~a Z (~fA,P)bah(~p(SA)t)~ea (A.7) 
a,b h 

This completes the construction Of fa ~ Q VP(sA) ' in the case when fA,p (3 
VP(sa) ' is a real-valued field on X. 

The notion at which we arrive in this way geometrically appears to be 
intrinsic: for it can be verified that, although the components - b (fA,p)aX and 
(VP(sA)')70ffa,p and VP(s3) ' depend on the choice of {ea}, nevertheless the 
expression on the right-hand side of equation (A.7), called the value offA.p 
on VP(sA) ' or the contraction offA,p with VP(sA) ', does not depend on the 
particular frame { ea } chosen. 
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